Exceptional surgeries and genera of knots
Ichihara, Kazuhiro
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 66-67 / Harvested from Project Euclid
Let $K(r)$ be the 3-manifold obtained by a Dehn surgery on a hyperbolic knot $K$ in the 3-sphere a along a slope $r \ne \infty$. We show that if $|r| > 3 \cdot 2^{7/4} g$, then $K(r)$ is an irreducible 3-manifold with infinite and word-hyperbolic fundamental group, where $g$ denotes the genus of $K$.
Publié le : 2001-04-14
Classification:  Exceptional surgery,  hyperbolic 3-manifold,  57M50,  57M25
@article{1148393084,
     author = {Ichihara, Kazuhiro},
     title = {Exceptional surgeries and genera of knots},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 66-67},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393084}
}
Ichihara, Kazuhiro. Exceptional surgeries and genera of knots. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  66-67. http://gdmltest.u-ga.fr/item/1148393084/