Note on the ring of integers of a Kummer extension of prime degree. III
Ichimura, Humio
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 71-73 / Harvested from Project Euclid
Let $p$ be an odd prime number, $K$ a CM-field, and $K_{\infty}/K$ the cyclotomic $\mathbf{Z}_p$-extension with its $n$-th layer $K_n$ ($n \geq 0$). Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $K_n$. For the odd part $A_n^-$ of $A_n$, it is well known that the natural map $A_n^- \to A_{n+1}^-$ is injective. The purpose of this note is to show that an analogous phenomenon occurs for the Galois module structure of rings of integers of a certain class of tamely ramified extensions over $K_n$ of degree $p$.
Publié le : 2001-05-14
Classification:  Normal integral basis,  Kummer extension of prime degree,  CM-field,  $\mathbf {Z}_p$-extension,  11R33,  11R23
@article{1148393069,
     author = {Ichimura, Humio},
     title = {Note on the ring of integers of a Kummer extension of prime degree. III},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 71-73},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393069}
}
Ichimura, Humio. Note on the ring of integers of a Kummer extension of prime degree. III. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  71-73. http://gdmltest.u-ga.fr/item/1148393069/