Prime geodesic theorem via the explicit formula of $\Psi $ for hyperbolic 3-manifolds
Nakasuji, Maki
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 130-133 / Harvested from Project Euclid
We obtain a lower bound for the error term of the prime geodesic theorem for hyperbolic 3-manifolds. Our result is $\Omega_{\pm}(x(\log\log x)^{1/3} / \log x)$. We also generalize Sarnak's upper bound $O(x^{(5/3) + \varepsilon})$ to compact manifolds.
Publié le : 2001-09-14
Classification:  Lower bound,  prime geodesic theorem,  explicit formula,  11F72,  11M36
@article{1148393038,
     author = {Nakasuji, Maki},
     title = {Prime geodesic theorem via the explicit formula of $\Psi $ for hyperbolic 3-manifolds},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 130-133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393038}
}
Nakasuji, Maki. Prime geodesic theorem via the explicit formula of $\Psi $ for hyperbolic 3-manifolds. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  130-133. http://gdmltest.u-ga.fr/item/1148393038/