A note on the Selmer group of the elliptic curve $y^2 = x^3 + Dx$
Goto, Takeshi
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 122-125 / Harvested from Project Euclid
We present an explicit formula for the Selmer rank of the elliptic curve $y^2 = x^3 + Dx$. Using this formula, we give some results analogous to Iskra's theorem.
Publié le : 2001-09-14
Classification:  Selmer group,  elliptic curve,  congruent number,  11G05,  14H52
@article{1148393036,
     author = {Goto, Takeshi},
     title = {A note on the Selmer group of the elliptic curve $y^2 = x^3 + Dx$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 122-125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148393036}
}
Goto, Takeshi. A note on the Selmer group of the elliptic curve $y^2 = x^3 + Dx$. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  122-125. http://gdmltest.u-ga.fr/item/1148393036/