Let $G = \Gamma_0(N)$ and $g$ be the group generated by the
involution $z \mapsto -1/Nz$ of the upper half plane. We determine
the cohomology set $H^1(g,G)$ in terms of the class numbers
$h(-N)$ and $h(-4N)$ of quadratic forms.
Publié le : 2001-09-14
Classification:
Congruence subgroups of level $N$,
the involution,
cohomology sets,
binary quadratic forms,
class number of orders,
11F75
@article{1148393032,
author = {Ono, Takashi},
title = {On certain cohomology set for $\Gamma \_0(N)$. II},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {77},
number = {10},
year = {2001},
pages = { 108-110},
language = {en},
url = {http://dml.mathdoc.fr/item/1148393032}
}
Ono, Takashi. On certain cohomology set for $\Gamma _0(N)$. II. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp. 108-110. http://gdmltest.u-ga.fr/item/1148393032/