Discreteness criteria for subgroups in complex hyperbolic space
Dai, Binlin ; Fang, Ainong ; Nai, Bing
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 168-172 / Harvested from Project Euclid
In this paper, we study the discreteness criteria for subgroups of $U(1, n; \mathbf{C})$ in complex hyperbolic space $H^n_{\mathbf{C}}$. We prove that a nonelementary subgroup $G$ of $U(1, n; \mathbf{C})$ with condition A is discrete if and only if every two generator subgroup of $G$ is discrete. We also prove that if a nonelementary subgroup $G$ of $U(1, n; \mathbf{C})$ contains a sequence of distinct elements $\{g_m\}$ with $\operatorname{Card}(\operatorname{fix}(g_m) \cap \partial H^n_{\mathbf{C}}) \ne \infty$ and $g_m \rightarrow I$ as $m \rightarrow \infty$, then $G$ contains a non-discrete, nonelementary two generator subgroup.
Publié le : 2001-12-14
Classification:  Complex hyperbolic space,  limit set,  elementary groups,  30F40,  30C62,  20H10
@article{1148392983,
     author = {Dai, Binlin and Fang, Ainong and Nai, Bing},
     title = {Discreteness criteria for subgroups in complex hyperbolic space},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 168-172},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148392983}
}
Dai, Binlin; Fang, Ainong; Nai, Bing. Discreteness criteria for subgroups in complex hyperbolic space. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  168-172. http://gdmltest.u-ga.fr/item/1148392983/