Note on distribution of units of real quadratic number fields
Kataoka, Norisato
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 161-163 / Harvested from Project Euclid
Let $k$ be a real quadratic number field and $\mathfrak{o}_k$, $E$ the ring of integers and the group of units in $k$. Denote by $E_{\mathfrak{p}}$ a subgroup represented by $E$ of $(\mathfrak{o}_k / \mathfrak{p})^{\times}$ for a prime ideal $\mathfrak{p}$ in $k$. We report that for a given positive integer $a$, the set of prime ideals of degree 1 for which the residual index of $E_{\mathfrak{p}}$ is equal to $a$ has a density under the Generalized Riemann Hypothesis.
Publié le : 2001-12-14
Classification:  Number theory,  quadratic field,  density,  11R45
@article{1148392981,
     author = {Kataoka, Norisato},
     title = {Note on distribution of units of real quadratic number fields},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 161-163},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148392981}
}
Kataoka, Norisato. Note on distribution of units of real quadratic number fields. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  161-163. http://gdmltest.u-ga.fr/item/1148392981/