Vanishing of certain cohomology sets for $SL_n(R_{\mathcal {M}})$
Gajcowski, Nicholas Hine
Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, p. 157-160 / Harvested from Project Euclid
Let $\mathcal{M}$ be a maximal ideal of a commutative ring $R$ such that $\sharp(R / \mathcal{M}) < \infty$ and $\operatorname{char} R / \mathcal{M} \ne 2$. Denoting the $\mathcal{M}$-adic completion of $R$ by $R_{\mathcal{M}}$, we will show $H^1(g, SL_n(R_{\mathcal{M}}))$ vanishes for $g = \langle s \rangle$ acting on $SL_n(R_{\mathcal{M}})$ via $A^s = (A^{-1})^t$ where $t$ is the transpose operator.
Publié le : 2001-12-14
Classification:  Projective limits,  cohomology sets,  involution,  quadratic forms,  orthogonal groups,  Lie algebras,  11F75
@article{1148392980,
     author = {Gajcowski, Nicholas Hine},
     title = {Vanishing of certain cohomology sets for $SL\_n(R\_{\mathcal {M}})$},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {77},
     number = {10},
     year = {2001},
     pages = { 157-160},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148392980}
}
Gajcowski, Nicholas Hine. Vanishing of certain cohomology sets for $SL_n(R_{\mathcal {M}})$. Proc. Japan Acad. Ser. A Math. Sci., Tome 77 (2001) no. 10, pp.  157-160. http://gdmltest.u-ga.fr/item/1148392980/