We consider the Hecke $L$-function $L(s,\lambda^m)$ of the
imaginary quadratic field $\mathbf{Q}(i)$ with the $m$-th Grossencharacter
$\lambda^m$. We obtain the universality property of $L(s,\lambda^m)$
as both $m$ and $t = \operatorname{Im}(s)$ go to infinity.
Publié le : 2002-05-14
Classification:
Hecke $L$-function,
universality of zeta functions,
Grossencharacter,
imaginary quadratic field,
11M41,
19R42
@article{1148392714,
author = {Mishou, Hidehiko and Koyama, Shin-ya},
title = {Universality of Hecke $L$-functions in the Grossencharacter-aspect},
journal = {Proc. Japan Acad. Ser. A Math. Sci.},
volume = {78},
number = {10},
year = {2002},
pages = { 63-67},
language = {en},
url = {http://dml.mathdoc.fr/item/1148392714}
}
Mishou, Hidehiko; Koyama, Shin-ya. Universality of Hecke $L$-functions in the Grossencharacter-aspect. Proc. Japan Acad. Ser. A Math. Sci., Tome 78 (2002) no. 10, pp. 63-67. http://gdmltest.u-ga.fr/item/1148392714/