Arithmetic forms of Selberg zeta functions with applications to prime geodesic theorem
Arakawa, Tsuneo ; Koyama, Shin-ya ; Nakasuji, Maki
Proc. Japan Acad. Ser. A Math. Sci., Tome 78 (2002) no. 10, p. 120-125 / Harvested from Project Euclid
We obtain an arithmetic expression of the Selberg zeta function for cocompact Fuchsian group defined via an indefinite division quaternion algebra over $\mathbf{Q}$. As application to the prime geodesic theorem, we prove certain uniformity of the distribution.
Publié le : 2002-09-14
Classification:  Quaternion algebra,  Selberg zeta function,  Prime geodesic theorem,  11R52,  11M72,  58E10
@article{1148392633,
     author = {Arakawa, Tsuneo and Koyama, Shin-ya and Nakasuji, Maki},
     title = {Arithmetic forms of Selberg zeta functions with applications to prime geodesic theorem},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {78},
     number = {10},
     year = {2002},
     pages = { 120-125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148392633}
}
Arakawa, Tsuneo; Koyama, Shin-ya; Nakasuji, Maki. Arithmetic forms of Selberg zeta functions with applications to prime geodesic theorem. Proc. Japan Acad. Ser. A Math. Sci., Tome 78 (2002) no. 10, pp.  120-125. http://gdmltest.u-ga.fr/item/1148392633/