Toric self-dual Einstein metrics on compact orbifolds
Calderbank, David M. J. ; Singer, Michael A.
Duke Math. J., Tome 131 (2006) no. 1, p. 237-258 / Harvested from Project Euclid
We prove that any compact self-dual Einstein $4$ -orbifold of positive scalar curvature whose isometry group contains a $2$ -torus is, up to an orbifold covering, a quaternion Kähler quotient of $(k-1)$ -dimensional quaternionic projective space by a $(k-2)$ -torus for some $k\geq 2$ . We also obtain a topological classification in terms of the intersection form of the $4$ -orbifold
Publié le : 2006-06-01
Classification:  53C25,  53C26
@article{1148224039,
     author = {Calderbank, David M. J. and Singer, Michael A.},
     title = {Toric self-dual Einstein metrics on compact orbifolds},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 237-258},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148224039}
}
Calderbank, David M. J.; Singer, Michael A. Toric self-dual Einstein metrics on compact orbifolds. Duke Math. J., Tome 131 (2006) no. 1, pp.  237-258. http://gdmltest.u-ga.fr/item/1148224039/