Multiple positive solutions for a nonlinear elliptic equation in weighted Sobolev space
Obeid, Amira
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 325-340 / Harvested from Project Euclid
In this paper, we consider the problem (${\cal P}_{\lambda}$) in the setting of a weighted Sobolev space $W^{1, p}(\Omega, \omega)$, where $\omega$ is a weight function defined on the unbounded domain $\Omega$. The study is based on the variational methods and critical point theory. We show the existence of at least two nonnegative solutions, one with negative energy, the other one with energy which changes sign at a certain value of the positive parameter $\lambda$.
Publié le : 2006-06-14
Classification:  Weighted Sobolev space,  nonlinear boundary condition,  Ekeland's principle,  Palais-Smale condition,  34B15
@article{1148059467,
     author = {Obeid, Amira},
     title = {Multiple positive solutions for a nonlinear elliptic 
equation in weighted Sobolev space},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 325-340},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059467}
}
Obeid, Amira. Multiple positive solutions for a nonlinear elliptic 
equation in weighted Sobolev space. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  325-340. http://gdmltest.u-ga.fr/item/1148059467/