On the Hochschild cohomology of Beurling Algebras
Feizi, E. ; Pourabbas, A.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 305-318 / Harvested from Project Euclid
Let $G$ be a locally compact group and let $\omega$ be a weight function on $G$. Under a very mild assumption on $\omega$, we show that $L^1(G,\omega)$ is (2n+1)-weakly amenable for every $n\in \mathbb Z^+$. Also for every odd $n\in\mathbb{N}$ we show that $\h^2(L^1(G,\omega),(L^1(G,\omega))^{(n)})$ is a Banach space.
Publié le : 2006-06-14
Classification:  weak amenability,  cohomology,  Beurling algebra,  43A20,  46M20
@article{1148059465,
     author = {Feizi, E. and Pourabbas, A.},
     title = {On the Hochschild cohomology of Beurling Algebras},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 305-318},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059465}
}
Feizi, E.; Pourabbas, A. On the Hochschild cohomology of Beurling Algebras. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  305-318. http://gdmltest.u-ga.fr/item/1148059465/