Bounded sets and dual strong sequences in locally convex spaces
Tsirulnikov, Bella
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 295-304 / Harvested from Project Euclid
Given a duality $\langle E, F\rangle$, a dual strong sequence is a sequence of bidual enlargements of $F$ in the algebraic dual $E^\ast$ of $E$. In this article, we investigate the bounded sets generated by a dual strong sequence and related associated topologies.
Publié le : 2006-06-14
Classification:  dual strong sequence,  transbarrel,  locally barrelled,  associated topologies,  bounded sets,  46A08
@article{1148059464,
     author = {Tsirulnikov, Bella},
     title = {Bounded sets and dual strong sequences in locally convex spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 295-304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059464}
}
Tsirulnikov, Bella. Bounded sets and dual strong sequences in locally convex spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  295-304. http://gdmltest.u-ga.fr/item/1148059464/