For any commutative ring $R$, we introduce a group attached
to $R$, the
{\em Brauer-Galois group of $R$}, defined to be
the subgroup of the Brauer group of $R$
consisting of the classes of the Azumaya $R$-algebras which
can be represented,
via Brauer equivalence, by a Galois extension of $R$. We
compute this group
for some particular
commutative rings.
@article{1148059461,
author = {Nuss, Philippe},
title = {Galois-Azumaya extensions and
the Brauer-Galois group of a commutative ring},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {12},
number = {5},
year = {2006},
pages = { 247-270},
language = {en},
url = {http://dml.mathdoc.fr/item/1148059461}
}
Nuss, Philippe. Galois-Azumaya extensions and
the Brauer-Galois group of a commutative ring. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp. 247-270. http://gdmltest.u-ga.fr/item/1148059461/