Galois-Azumaya extensions and the Brauer-Galois group of a commutative ring
Nuss, Philippe
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 247-270 / Harvested from Project Euclid
For any commutative ring $R$, we introduce a group attached to $R$, the {\em Brauer-Galois group of $R$}, defined to be the subgroup of the Brauer group of $R$ consisting of the classes of the Azumaya $R$-algebras which can be represented, via Brauer equivalence, by a Galois extension of $R$. We compute this group for some particular commutative rings.
Publié le : 2006-06-14
Classification:  noncommutative ring,  Galois-extension,  Azumaya algebra,  quaternion,  Brauer group,  16H05,  16K50,  19C30,  16W22,  16W20
@article{1148059461,
     author = {Nuss, Philippe},
     title = {Galois-Azumaya extensions and
the Brauer-Galois group of a commutative ring},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 247-270},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059461}
}
Nuss, Philippe. Galois-Azumaya extensions and
the Brauer-Galois group of a commutative ring. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  247-270. http://gdmltest.u-ga.fr/item/1148059461/