Convergence of Baumslag-Solitar groups
Stalder, Yves
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 221-233 / Harvested from Project Euclid
We study convergent sequences of Baumslag-Solitar groups in the space of marked groups. We prove that $BS(\mathfrak m,\mathfrak n) \to \F_2$ for $|\mathfrak m|,|\mathfrak n| \to \infty$ and $BS(1,\mathfrak n) \to \mathbb{Z}\wr\mathbb{Z}$ for $|\mathfrak n| \to \infty$. For $\mathfrak m$ fixed, $|\mathfrak m| \geqslant 2$, we show that the sequence $(BS(\mathfrak m,\mathfrak n))_{\mathfrak n}$ is not convergent and characterize many convergent subsequences. Moreover if $X_\mathfrak m$ is the set of $BS(\mathfrak m,\mathfrak n)$'s for $\mathfrak n$ relatively prime to $\mathfrak m$ and $|\mathfrak n| \geqslant 2$, then the map $BS(\mathfrak m,\mathfrak n) \mapsto \mathfrak n$ extends continuously on $\overline{X_\mathfrak m}$ to a surjection onto invertible $\mathfrak m$-adic integers.
Publié le : 2006-06-14
Classification:  Baumslag-Solitar groups,  space of marked groups,  20 E 06,  20 E 18,  20 F 05
@article{1148059458,
     author = {Stalder, Yves},
     title = {Convergence of Baumslag-Solitar groups},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 221-233},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059458}
}
Stalder, Yves. Convergence of Baumslag-Solitar groups. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  221-233. http://gdmltest.u-ga.fr/item/1148059458/