We prove that the space \textbf{$L_\Omega ^p\left( R^n\right) $}, where $%
\Omega =\left\{ \left( 1+\left\| x\right\| ^2\right) ^s:s>\frac{n(p-1)}
2\right\} $ and $p\in \left] 1,+\infty \right[ $ , is a regular locally $m$-convex algebra. Others results are also obtained.
Publié le : 2006-03-14
Classification:
Algèbre localement $m$-convexe commutative et
semi-simple,
produit de convolution,
poids sur $R^n$,
algèbre régulière,
46H20,
46E30
@article{1148059341,
author = {El Kinani, A.},
title = {R\'egularit\'e d'une alg\`ebre $m$-convexe \`a poids},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {12},
number = {5},
year = {2006},
pages = { 159-166},
language = {fr},
url = {http://dml.mathdoc.fr/item/1148059341}
}
El Kinani, A. Régularité d'une algèbre $m$-convexe à poids. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp. 159-166. http://gdmltest.u-ga.fr/item/1148059341/