Structure of commutative cancellative subarchimedean semigroups
Cegarra, Antonio M. ; Petrich, Mario
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 101-111 / Harvested from Project Euclid
A commutative semigroup $S$ is subarchimedean if there is an element $z\in S$ such that for every $a\in S$ there exist a positive integer $n$ and $x\in S$ such that $z^n=ax$. Such a semigroup is archimedean if this holds for all ${z\in S}$. A commutative cancellative idempotent-free archimedean semigroup is an $\frak{N}$-semigroup. We study the structure of semigroups in the title as related to $\frak{N}$-semigroups.
Publié le : 2006-03-14
Classification:  semigroup,  commutative,  cancellative,  subarchimedean,  20M14,  20M30
@article{1148059336,
     author = {Cegarra, Antonio M. and Petrich, Mario},
     title = {Structure of commutative cancellative subarchimedean semigroups},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 101-111},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1148059336}
}
Cegarra, Antonio M.; Petrich, Mario. Structure of commutative cancellative subarchimedean semigroups. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  101-111. http://gdmltest.u-ga.fr/item/1148059336/