A commutative semigroup $S$ is subarchimedean if there is an element $z\in S$ such that for every
$a\in S$ there exist a positive integer $n$ and $x\in S$ such that $z^n=ax$. Such a semigroup is
archimedean if this holds for all ${z\in S}$. A commutative cancellative idempotent-free
archimedean semigroup is an $\frak{N}$-semigroup. We study the structure of semigroups in the
title as related to $\frak{N}$-semigroups.
@article{1148059336,
author = {Cegarra, Antonio M. and Petrich, Mario},
title = {Structure of commutative cancellative subarchimedean semigroups},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {12},
number = {5},
year = {2006},
pages = { 101-111},
language = {en},
url = {http://dml.mathdoc.fr/item/1148059336}
}
Cegarra, Antonio M.; Petrich, Mario. Structure of commutative cancellative subarchimedean semigroups. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp. 101-111. http://gdmltest.u-ga.fr/item/1148059336/