The Teichmüller space of the ideal boundary
Taniguchi, Masahiko
Hiroshima Math. J., Tome 36 (2006) no. 1, p. 39-48 / Harvested from Project Euclid
In this paper, we consider an analytic kind of structure on the ideal boundary of a Riemann surface, which is finer than the topological one, and show that the set of the natural equivalence classes of mutually quasiconformally related such structures admits a complex Banach manifold structure.
Publié le : 2006-03-14
Classification:  Riemann surfaces,  ideal boundaries,  quasiconformal maps,  Teichmüller spaces,  30F25,  30F60,  30C62
@article{1147883395,
     author = {Taniguchi, Masahiko},
     title = {The Teichm\"uller space of the ideal boundary},
     journal = {Hiroshima Math. J.},
     volume = {36},
     number = {1},
     year = {2006},
     pages = { 39-48},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1147883395}
}
Taniguchi, Masahiko. The Teichmüller space of the ideal boundary. Hiroshima Math. J., Tome 36 (2006) no. 1, pp.  39-48. http://gdmltest.u-ga.fr/item/1147883395/