Operator-valued Free Entropy and Modular Frames
Guo, Maozheng ; Meng, Bin ; Cao, Xiaohong
Methods Appl. Anal., Tome 11 (2004) no. 1, p. 331-344 / Harvested from Project Euclid
We introduce the operator-valued relative free entropy $\chi_\mb^{\ast}(X_1,X_2,\cdots,X_n:\mb)$ of a family of self-adjoint random variables $X_1,X_2,\cdots,X_n$ in a $\mb$-valued noncommutative probability space $(\ma,\emb,\mb)$. This notion extends D. Voiculescu's relative free entropy $\Phi^{\ast}$ which defined in a tracial W*-noncommutative probability space to a more general context. The free entropy of a semicircular variable with conditional expectation covariance can be computed by using the modular frames and then we point out the relation between the free entropy of a semicircular variable and the index of a conditional expectation. At last, we obtain an estimate of the free entropy dimension $\delta^\ast_{\mb,\tau}$.
Publié le : 2004-09-14
Classification: 
@article{1147353057,
     author = {Guo, Maozheng and Meng, Bin and Cao, Xiaohong},
     title = {Operator-valued Free Entropy and Modular Frames},
     journal = {Methods Appl. Anal.},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 331-344},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1147353057}
}
Guo, Maozheng; Meng, Bin; Cao, Xiaohong. Operator-valued Free Entropy and Modular Frames. Methods Appl. Anal., Tome 11 (2004) no. 1, pp.  331-344. http://gdmltest.u-ga.fr/item/1147353057/