A characterization of the infinitely divisible squared Gaussian processes
Eisenbaum, Nathalie ; Kaspi, Haya
Ann. Probab., Tome 34 (2006) no. 1, p. 728-742 / Harvested from Project Euclid
We show that, up to multiplication by constants, a Gaussian process has an infinitely divisible square if and only if its covariance is the Green function of a transient Markov process.
Publié le : 2006-03-14
Classification:  Gaussian processes,  infinite divisibility,  Markov processes,  local time,  60E07,  60G15,  60J25,  60J55
@article{1147179987,
     author = {Eisenbaum, Nathalie and Kaspi, Haya},
     title = {A characterization of the infinitely divisible squared Gaussian processes},
     journal = {Ann. Probab.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 728-742},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1147179987}
}
Eisenbaum, Nathalie; Kaspi, Haya. A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab., Tome 34 (2006) no. 1, pp.  728-742. http://gdmltest.u-ga.fr/item/1147179987/