Singularity points for first passage percolation
Yukich, J. E. ; Zhang, Yu
Ann. Probab., Tome 34 (2006) no. 1, p. 577-592 / Harvested from Project Euclid
Let 02 the value a with probability p or the value b with probability 1−p. For all u,v∈ℤ2, let T(u,v) denote the first passage time between u and v. We show that there are points x∈ℝ2 such that the “time constant” in the direction of x, namely, lim n→∞n−1Ep[T(0,nx)], is not a three times differentiable function of p.
Publié le : 2006-03-14
Classification:  First passage percolation,  shape theory,  the right-hand edge,  nondifferentiability of time constants,  60K35
@article{1147179983,
     author = {Yukich, J. E. and Zhang, Yu},
     title = {Singularity points for first passage percolation},
     journal = {Ann. Probab.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 577-592},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1147179983}
}
Yukich, J. E.; Zhang, Yu. Singularity points for first passage percolation. Ann. Probab., Tome 34 (2006) no. 1, pp.  577-592. http://gdmltest.u-ga.fr/item/1147179983/