Asymptotic normality of extreme value estimators on C[0,1]
Einmahl, John H. J. ; Lin, Tao
Ann. Statist., Tome 34 (2006) no. 1, p. 469-492 / Harvested from Project Euclid
Consider n i.i.d. random elements on C[0,1]. We show that, under an appropriate strengthening of the domain of attraction condition, natural estimators of the extreme-value index, which is now a continuous function, and the normalizing functions have a Gaussian process as limiting distribution. A key tool is the weak convergence of a weighted tail empirical process, which makes it possible to obtain the results uniformly on [0,1]. Detailed examples are also presented.
Publié le : 2006-02-14
Classification:  Estimation,  extreme value index,  infinite-dimensional extremes,  weak convergence on C[0,1],  62G32,  62G30,  62G05,  60G70,  60F17
@article{1146576271,
     author = {Einmahl, John H. J. and Lin, Tao},
     title = {Asymptotic normality of extreme value estimators on C[0,1]},
     journal = {Ann. Statist.},
     volume = {34},
     number = {1},
     year = {2006},
     pages = { 469-492},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1146576271}
}
Einmahl, John H. J.; Lin, Tao. Asymptotic normality of extreme value estimators on C[0,1]. Ann. Statist., Tome 34 (2006) no. 1, pp.  469-492. http://gdmltest.u-ga.fr/item/1146576271/