Strongly real $2$-blocks and the Frobenius-Schur indicator
Murray, John
Osaka J. Math., Tome 43 (2006) no. 2, p. 201-213 / Harvested from Project Euclid
Let $G$ be a finite group, let $k$ be an algebraically closed field of characteristic $2$ and let $\Omega:=\{g\in G\mid g^2=1_G\}$. It is shown that for a block $B$ of $kG$, the permutation module $k\Omega$ has a $B$-composition factor if and only if the Frobenius-Schur indicator of the regular character of $B$ is non-zero or equivalently if and only if $B$ is real with a strongly real defect class.
Publié le : 2006-03-15
Classification:  20C20,  20C15
@article{1146243003,
     author = {Murray, John},
     title = {Strongly real $2$-blocks and the Frobenius-Schur indicator},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 201-213},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1146243003}
}
Murray, John. Strongly real $2$-blocks and the Frobenius-Schur indicator. Osaka J. Math., Tome 43 (2006) no. 2, pp.  201-213. http://gdmltest.u-ga.fr/item/1146243003/