Curves in projective spaces and their index of regularity
Ballico, Edoardo
Osaka J. Math., Tome 43 (2006) no. 2, p. 179-181 / Harvested from Project Euclid
For all integers $n \ge 3$ we show the existence of many triples $(d,g,\rho)$ such that there is a smooth non-degenerate curve $C \subset \mathbf{P}^n$ with degree $d$, genus $g$ and index of regularity $\rho$. The curve $C$ lies in a smooth $K3$ surface $S \subset \mathbf{P}^n$.
Publié le : 2006-03-15
Classification:  14H50,  14N50
@article{1146243000,
     author = {Ballico, Edoardo},
     title = {Curves in projective spaces and their index of regularity},
     journal = {Osaka J. Math.},
     volume = {43},
     number = {2},
     year = {2006},
     pages = { 179-181},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1146243000}
}
Ballico, Edoardo. Curves in projective spaces and their index of regularity. Osaka J. Math., Tome 43 (2006) no. 2, pp.  179-181. http://gdmltest.u-ga.fr/item/1146243000/