An exponential inequality under weak dependence
Kallabis, Raoul S. ; Neumann, Michael H.
Bernoulli, Tome 12 (2006) no. 2, p. 333-350 / Harvested from Project Euclid
Doukhan and Louhichi introduced a covariance-based concept of weak dependence which is more general than classical mixing concepts. We prove a Bernstein-type inequality under this condition which is similar to the well-known inequality in the independent case. We apply this tool to derive asymptotic properties of penalized least-squares estimators in Barron's classes.
Publié le : 2006-04-14
Classification:  Barron's classes,  Bernstein-type inequality,  cumulants,  neural networks,  nonparametric autoregression,  penalized least squares,  weak dependence
@article{1145993977,
     author = {Kallabis, Raoul S. and Neumann, Michael H.},
     title = {An exponential inequality under weak dependence},
     journal = {Bernoulli},
     volume = {12},
     number = {2},
     year = {2006},
     pages = { 333-350},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1145993977}
}
Kallabis, Raoul S.; Neumann, Michael H. An exponential inequality under weak dependence. Bernoulli, Tome 12 (2006) no. 2, pp.  333-350. http://gdmltest.u-ga.fr/item/1145993977/