Geometry of reflective submanifolds in Riemannian symmetric spaces
TASAKI, Hiroyuki
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 275-297 / Harvested from Project Euclid
The set $\mathscr{R}(B)$ of submanifolds conjugate to a given reflective submanifold $B$ in a Riemannian symmetric space $M$ has a structure of symmetric space. Using this structure, for a submanifold $N$ in $M$ we establish integral formulae which represent the integrals of the functions $C \mapsto \mathrm{vol}(N \cap C)$ on $\mathscr{R}(B)$ by some extrinsic geometric amounts of $N$ .
Publié le : 2006-01-14
Classification:  reflective submanifold,  symmetric space,  Crofton formula,  53C65
@article{1145287102,
     author = {TASAKI, Hiroyuki},
     title = {Geometry of reflective submanifolds in Riemannian symmetric spaces},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 275-297},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1145287102}
}
TASAKI, Hiroyuki. Geometry of reflective submanifolds in Riemannian symmetric spaces. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  275-297. http://gdmltest.u-ga.fr/item/1145287102/