Carleson type measures on parabolic Bergman spaces
NISHIO, Masaharu ; YAMADA, Masahiro
J. Math. Soc. Japan, Tome 58 (2006) no. 3, p. 83-96 / Harvested from Project Euclid
Let $b^{p}_{\alpha}$ , $0<\alpha \le1$ , be the parabolic Bergman space, the Banach space of solutions of parabolic equations $(\partial/\partial t+(-\varDelta)^{\alpha})u=0$ on the upper half space $\mathbf{R}^{n+1}_{+}$ which have finite $L^{p}$ norms. We study Carleson type measures on $b^{p}_{\alpha}$ , and give a necessary and sufficient condition for a measure $\mu$ on $\mathbf{R}^{n+1}_{+}$ to be of Carleson type on $b^{p}_{\alpha}$ . As an application, we characterize bounded Toeplitz operators in the space $b^{2}_{\alpha}$ .
Publié le : 2006-01-14
Classification:  Bergman space,  Carleson measure,  heat equation,  parabolic equation of fractional order,  32A36,  26D10,  35K05
@article{1145287094,
     author = {NISHIO, Masaharu and YAMADA, Masahiro},
     title = {Carleson type measures on parabolic Bergman spaces},
     journal = {J. Math. Soc. Japan},
     volume = {58},
     number = {3},
     year = {2006},
     pages = { 83-96},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1145287094}
}
NISHIO, Masaharu; YAMADA, Masahiro. Carleson type measures on parabolic Bergman spaces. J. Math. Soc. Japan, Tome 58 (2006) no. 3, pp.  83-96. http://gdmltest.u-ga.fr/item/1145287094/