Symplectic Deformations of Kähler Manifolds
de Bartolomeis, Paolo
J. Symplectic Geom., Tome 3 (2005) no. 2, p. 341-355 / Harvested from Project Euclid
Given a compact symplectic manifold $(M,\,\kappa)$, $H^{2}(M,\,{\Bbb{R}})$\, represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case $(M,\,\kappa,\,J)$ is a compact Kähler manifold, the author provides a complete description of the subset of $H^{2}(M,\,{\Bbb{R}})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from $M$. Several examples are also discussed.
Publié le : 2005-09-14
Classification: 
@article{1144954877,
     author = {de Bartolomeis, Paolo},
     title = {Symplectic Deformations of K\"ahler Manifolds},
     journal = {J. Symplectic Geom.},
     volume = {3},
     number = {2},
     year = {2005},
     pages = { 341-355},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1144954877}
}
de Bartolomeis, Paolo. Symplectic Deformations of Kähler Manifolds. J. Symplectic Geom., Tome 3 (2005) no. 2, pp.  341-355. http://gdmltest.u-ga.fr/item/1144954877/