Gromov--Witten invariants of symplectic quotients and adiabatic limits
Gaio, Ana Rita Pires ; Salamon, Dietmar A.
J. Symplectic Geom., Tome 3 (2005) no. 2, p. 55-159 / Harvested from Project Euclid
We study pseudoholomorphic curves in symplectic quotients as adiabatic limits of solutions to the symplectic vortex equations. Our main theorem asserts that the genus zero invariants of Hamiltonian group actions defined by these equations are related to the genus zero Gromov--Witten invariants of the symplectic quotient (in the monotone case) via a natural ring homomorphism from the equivariant cohomology of the ambient space to the quantum cohomology of the quotient.
Publié le : 2005-03-14
Classification: 
@article{1144947823,
     author = {Gaio, Ana Rita Pires and Salamon, Dietmar A.},
     title = {Gromov--Witten invariants of symplectic quotients and adiabatic
 limits},
     journal = {J. Symplectic Geom.},
     volume = {3},
     number = {2},
     year = {2005},
     pages = { 55-159},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1144947823}
}
Gaio, Ana Rita Pires; Salamon, Dietmar A. Gromov--Witten invariants of symplectic quotients and adiabatic
 limits. J. Symplectic Geom., Tome 3 (2005) no. 2, pp.  55-159. http://gdmltest.u-ga.fr/item/1144947823/