Lagrangian submanifolds and Lefschetz pencils
Auroux ; Muñoz, Vicente ; Presas, Francisco
J. Symplectic Geom., Tome 3 (2005) no. 2, p. 171-219 / Harvested from Project Euclid
Given a Lagrangian submanifold in a symplectic manifold and a Morse function on the submanifold, we show that there is an isotopic Morse function and a symplectic Lefschetz pencil on the manifold extending the Morse function to the whole manifold. From this construction, we define a sequence of symplectic invariants classifying the isotopy classes of Lagrangian spheres in a symplectic 4-manifold.
Publié le : 2005-06-14
Classification: 
@article{1144947795,
     author = {Auroux and Mu\~noz, Vicente and Presas, Francisco},
     title = {Lagrangian submanifolds and Lefschetz pencils},
     journal = {J. Symplectic Geom.},
     volume = {3},
     number = {2},
     year = {2005},
     pages = { 171-219},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1144947795}
}
Auroux; Muñoz, Vicente; Presas, Francisco. Lagrangian submanifolds and Lefschetz pencils. J. Symplectic Geom., Tome 3 (2005) no. 2, pp.  171-219. http://gdmltest.u-ga.fr/item/1144947795/