Counting rational points on algebraic varieties
Browning, T. D. ; Heath-Brown, D. R. ; Salberger, P.
Duke Math. J., Tome 131 (2006) no. 1, p. 545-578 / Harvested from Project Euclid
For any $N \geq 2$ , let $Z \subset \mathbb{P}^N$ be a geometrically integral algebraic variety of degree $d$ . This article is concerned with the number $N_Z(B)$ of $\mathbb{Q}$ -rational points on $Z$ which have height at most $B$ . For any $\varepsilon>0$ , we establish the estimate $$N_Z(B)=O_{d,\varepsilon,N}(B^{\dim Z+\varepsilon})$$ , provided that $d \geq 6$ . As indicated, the implied constant depends at most on $d,\varepsilon$ , and $N$
Publié le : 2006-04-15
Classification:  14G05,  11G35
@article{1143936000,
     author = {Browning, T. D. and Heath-Brown, D. R. and Salberger, P.},
     title = {Counting rational points on algebraic varieties},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 545-578},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1143936000}
}
Browning, T. D.; Heath-Brown, D. R.; Salberger, P. Counting rational points on algebraic varieties. Duke Math. J., Tome 131 (2006) no. 1, pp.  545-578. http://gdmltest.u-ga.fr/item/1143936000/