Singular points of harmonic maps from 4-dimensional domains into 3-spheres
Nakajima, Tôru
Duke Math. J., Tome 131 (2006) no. 1, p. 531-543 / Harvested from Project Euclid
In this article we show that if a stable-stationary harmonic map $u$ from a domain in $\mathbb{R}^4$ into $\mathbb{S}^3$ has an isolated singular point $\xi$ , then the mapping degree $\degree (u , \xi)$ of $u$ at $\xi$ is $+1$ or $-1$ . Furthermore, the complete characterization of stable-stationary tangent maps from $\mathbb{B}^4$ to $\mathbb{S}^3$ is given
Publié le : 2006-04-15
Classification:  53C43,  58E20,  35J45,  35J50
@article{1143935999,
     author = {Nakajima, T\^oru},
     title = {Singular points of harmonic maps from 4-dimensional domains into 3-spheres},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 531-543},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1143935999}
}
Nakajima, Tôru. Singular points of harmonic maps from 4-dimensional domains into 3-spheres. Duke Math. J., Tome 131 (2006) no. 1, pp.  531-543. http://gdmltest.u-ga.fr/item/1143935999/