Rigidity of singular Schubert varieties in Gr(m,n)
Hong, Jaehyun
J. Differential Geom., Tome 69 (2005) no. 3, p. 1-22 / Harvested from Project Euclid
Let a = (pq11, . . . , pqrr) be a partition and a' = (p'1q'1, . . . , p'rq'r) be its conjugate. We will prove that if qi, q'i ≥ 2 for all 1 ≤ i ≤ r, then any irreducible subvariety X of Gr(m, n) whose homology class is an integral multiple of the Schubert class [σa] of type a is a Schubert variety of type a.
Publié le : 2005-09-14
Classification: 
@article{1143644311,
     author = {Hong, Jaehyun},
     title = {Rigidity of singular Schubert varieties in Gr(m,n)},
     journal = {J. Differential Geom.},
     volume = {69},
     number = {3},
     year = {2005},
     pages = { 1-22},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1143644311}
}
Hong, Jaehyun. Rigidity of singular Schubert varieties in Gr(m,n). J. Differential Geom., Tome 69 (2005) no. 3, pp.  1-22. http://gdmltest.u-ga.fr/item/1143644311/