An Uncountably Categorical Theory Whose Only Computably Presentable Model Is Saturated
Hirschfeldt, Denis R. ; Khoussainov, Bakhadyr ; Semukhin, Pavel
Notre Dame J. Formal Logic, Tome 47 (2006) no. 1, p. 63-71 / Harvested from Project Euclid
We build an א₁-categorical but not א₀-categorical theory whose only computably presentable model is the saturated one. As a tool, we introduce a notion related to limitwise monotonic functions.
Publié le : 2006-01-14
Classification:  computable structure,  aleph 1-categoricity,  03045,  03C57
@article{1143468311,
     author = {Hirschfeldt, Denis R. and Khoussainov, Bakhadyr and Semukhin, Pavel},
     title = {An Uncountably Categorical Theory Whose Only Computably
Presentable Model Is Saturated},
     journal = {Notre Dame J. Formal Logic},
     volume = {47},
     number = {1},
     year = {2006},
     pages = { 63-71},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1143468311}
}
Hirschfeldt, Denis R.; Khoussainov, Bakhadyr; Semukhin, Pavel. An Uncountably Categorical Theory Whose Only Computably
Presentable Model Is Saturated. Notre Dame J. Formal Logic, Tome 47 (2006) no. 1, pp.  63-71. http://gdmltest.u-ga.fr/item/1143468311/