Which intermediate propositional logics can prove their own completeness? I call a logic reflexive if a second-order metatheory of arithmetic created from the logic is sufficient to prove the completeness of the original logic. Given the collection of intermediate propositional logics, I prove that the reflexive logics are exactly those that are at least as strong as testability logic, that is, intuitionistic logic plus the scheme $\neg φ ∨ \neg\neg φ. I show that this result holds regardless of whether Tarskian or Kripke semantics is used in the definition of completeness. I also show that the operation of creating a second-order metatheory is injective, thereby insuring that I am actually considering each logic independently.