Overshoots and undershoots of Lévy processes
Doney, R. A. ; Kyprianou, A. E.
Ann. Appl. Probab., Tome 16 (2006) no. 1, p. 91-106 / Harvested from Project Euclid
We obtain a new fluctuation identity for a general Lévy process giving a quintuple law describing the time of first passage, the time of the last maximum before first passage, the overshoot, the undershoot and the undershoot of the last maximum. With the help of this identity, we revisit the results of Klüppelberg, Kyprianou and Maller [Ann. Appl. Probab. 14 (2004) 1766–1801] concerning asymptotic overshoot distribution of a particular class of Lévy processes with semi-heavy tails and refine some of their main conclusions. In particular, we explain how different types of first passage contribute to the form of the asymptotic overshoot distribution established in the aforementioned paper. Applications in insurance mathematics are noted with emphasis on the case that the underlying Lévy process is spectrally one sided.
Publié le : 2006-02-14
Classification:  Lévy processes,  first passage problem,  Wiener–Hopf factorization,  insurance risk process,  60G51,  60G50
@article{1141654282,
     author = {Doney, R. A. and Kyprianou, A. E.},
     title = {Overshoots and undershoots of L\'evy processes},
     journal = {Ann. Appl. Probab.},
     volume = {16},
     number = {1},
     year = {2006},
     pages = { 91-106},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1141654282}
}
Doney, R. A.; Kyprianou, A. E. Overshoots and undershoots of Lévy processes. Ann. Appl. Probab., Tome 16 (2006) no. 1, pp.  91-106. http://gdmltest.u-ga.fr/item/1141654282/