Distribution free goodness-of-fit tests for linear processes
Delgado, Miguel A. ; Hidalgo, Javier ; Velasco, Carlos
Ann. Statist., Tome 33 (2005) no. 1, p. 2568-2609 / Harvested from Project Euclid
This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett Tp-process with estimated parameters, which converges in distribution to the standard Brownian motion under the null hypothesis. We discuss tests of different natures such as omnibus, directional and Portmanteau-type tests. A Monte Carlo study illustrates the performance of the different tests in practice.
Publié le : 2005-12-14
Classification:  Nonparametric model checking,  spectral distribution,  linear processes,  martingale decomposition,  local alternatives,  omnibus,  smooth and directional tests,  long-range alternatives,  62G10,  62M10,  62F17,  62M15
@article{1140191667,
     author = {Delgado, Miguel A. and Hidalgo, Javier and Velasco, Carlos},
     title = {Distribution free goodness-of-fit tests for linear processes},
     journal = {Ann. Statist.},
     volume = {33},
     number = {1},
     year = {2005},
     pages = { 2568-2609},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1140191667}
}
Delgado, Miguel A.; Hidalgo, Javier; Velasco, Carlos. Distribution free goodness-of-fit tests for linear processes. Ann. Statist., Tome 33 (2005) no. 1, pp.  2568-2609. http://gdmltest.u-ga.fr/item/1140191667/