Toward equivariant Iwasawa theory, IV
Ritter, Jürgen ; Weiss, Alfred
Homology Homotopy Appl., Tome 7 (2005) no. 3, p. 155-171 / Harvested from Project Euclid
Let l be an odd prime number and K $infin$/k a Galois extension of totally real number fields, with k/Q and K $infin;/k $infin; finite, where k $infin$ is the cyclotomic Z l -extension of k. In [RW2] a "main conjecture" of equivariant Iwasawa theory is formulated which for pro-l groups G $infin$ is reduced in [RW3] to a property of the Iwasawa L-function of K $infin$/k. In this paper we extend this reduction for arbitrary G $infin$ to l-elementary groups G $infin$=$lang$s$rang$ x U, with $lang$s$rang$ a finite cyclic group of order prime to l and U a pro-l group. We also give first nonabelian examples of groups G $infin$ for which the conjecture holds.
Publié le : 2005-05-14
Classification:  11R23,  11R32,  11R37,  11R42,  11S23,  11S40
@article{1139839294,
     author = {Ritter, J\"urgen and Weiss, Alfred},
     title = {Toward equivariant Iwasawa theory, IV},
     journal = {Homology Homotopy Appl.},
     volume = {7},
     number = {3},
     year = {2005},
     pages = { 155-171},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1139839294}
}
Ritter, Jürgen; Weiss, Alfred. Toward equivariant Iwasawa theory, IV. Homology Homotopy Appl., Tome 7 (2005) no. 3, pp.  155-171. http://gdmltest.u-ga.fr/item/1139839294/