Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves
Köck, Bernhard
Homology Homotopy Appl., Tome 7 (2005) no. 3, p. 83-98 / Harvested from Project Euclid
We prove an equivariant Grothendieck-Ogg-Shafarevich formula. This formula may be viewed as an étale analogue of well-known formulas for Zariski sheaves generalizing the classical Chevalley-Weil formula. We give a new approach to those formulas (first proved by Ellingsrud/Lønsted, Nakajima, Kani and Ksir) which can also be applied in the étale case.
Publié le : 2005-05-14
Classification:  14F20,  14L30,  14H30
@article{1139839292,
     author = {K\"ock, Bernhard},
     title = {Computing the equivariant Euler characteristic of Zariski and \'etale sheaves on curves},
     journal = {Homology Homotopy Appl.},
     volume = {7},
     number = {3},
     year = {2005},
     pages = { 83-98},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1139839292}
}
Köck, Bernhard. Computing the equivariant Euler characteristic of Zariski and étale sheaves on curves. Homology Homotopy Appl., Tome 7 (2005) no. 3, pp.  83-98. http://gdmltest.u-ga.fr/item/1139839292/