Operator-space Grothendieck inequalities for noncommutative $L_p$ -spaces
Xu, Quanhua
Duke Math. J., Tome 131 (2006) no. 1, p. 525-574 / Harvested from Project Euclid
We prove the operator-space Grothendieck inequality for bilinear forms on subspaces of noncommutative $L_p$ -spaces with $2 \lt p \lt \infty$ . One of our results states that given a map $u: E\to F^*$ , where $E, F\subset L_p(M)$ ( $2 \lt p \lt \infty$ , $M$ being a von Neumann algebra), $u$ is completely bounded if and only if $u$ factors through a direct sum of a $p$ -column space and a $p$ -row space. We also obtain several operator-space versions of the classical little Grothendieck inequality for maps defined on a subspace of a noncommutative $L_p$ -space ( $2 \lt p \lt \infty$ ) with values in a $q$ -column space for every $q\in [p', p]$ ( $p'$ being the index conjugate to $p$ ). These results are the $L_p$ -space analogues of the recent works on the operator-space Grothendieck theorems by Pisier and Shlyakhtenko. The key ingredient of our arguments is some Khintchine-type inequalities for Shlyakhtenko's generalized circular systems. One of our main tools is a Haagerup-type tensor norm that turns out to be particularly fruitful when applied to subspaces of noncommutative $L_p$ -spaces ( $2 \lt p \lt \infty$ ). In particular, we show that the norm dual to this tensor norm, when restricted to subspaces of noncommutative $L_p$ -spaces, is equal to the factorization norm through a $p$ -row space
Publié le : 2006-02-15
Classification:  46L07,  46L50
@article{1139232349,
     author = {Xu, Quanhua},
     title = {Operator-space Grothendieck inequalities for noncommutative $L\_p$ -spaces},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 525-574},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1139232349}
}
Xu, Quanhua. Operator-space Grothendieck inequalities for noncommutative $L_p$ -spaces. Duke Math. J., Tome 131 (2006) no. 1, pp.  525-574. http://gdmltest.u-ga.fr/item/1139232349/