Laminar currents and birational dynamics
Dujardin, Romain
Duke Math. J., Tome 131 (2006) no. 1, p. 219-247 / Harvested from Project Euclid
We study the dynamics of a bimeromorphic map $X\rightarrow X$ , where $X$ is a compact complex Kähler surface. Under a natural geometric hypothesis, we construct an invariant probability measure, which is mixing, hyperbolic, and of maximal entropy. The proof relies heavily on the theory of laminar currents and is new even in the case of polynomial automorphisms of $\mathbb{C}^2$ . This extends recent results by E. Bedford and J. Diller
Publié le : 2006-02-01
Classification:  37F10,  32H50,  32U40
@article{1137077884,
     author = {Dujardin, Romain},
     title = {Laminar currents and birational dynamics},
     journal = {Duke Math. J.},
     volume = {131},
     number = {1},
     year = {2006},
     pages = { 219-247},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1137077884}
}
Dujardin, Romain. Laminar currents and birational dynamics. Duke Math. J., Tome 131 (2006) no. 1, pp.  219-247. http://gdmltest.u-ga.fr/item/1137077884/