Solution to the gradient problem of C.E. Weil
Buczolich, Zoltán
Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, p. 889-910 / Harvested from Project Euclid
In this paper we give a complete answer to the famous gradient problem of C. E. Weil. On an open set $G\subset \mathbb{R}^{2}$ we construct a differentiable function $f:G\to\mathbb{R}$ for which there exists an open set $\Omega_{1}\subset\mathbb{R}^{2}$ such that $\nabla f(\mathbf{p})\in \Omega_{1}$ for a $\mathbf{p}\in G$ but $\nabla f(\mathbf{q})\not\in\Omega_{1}$ for almost every $\mathbf{q}\in G$. This shows that the Denjoy-Clarkson property does not hold in higher dimensions.
Publié le : 2005-03-14
Classification:  gradient,  Denjoy-Clarkson property,  Lebesgue measure,  26B05,  28A75,  37E99
@article{1136999135,
     author = {Buczolich, Zolt\'an},
     title = {Solution to the gradient problem of C.E. Weil},
     journal = {Rev. Mat. Iberoamericana},
     volume = {21},
     number = {2},
     year = {2005},
     pages = { 889-910},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136999135}
}
Buczolich, Zoltán. Solution to the gradient problem of C.E. Weil. Rev. Mat. Iberoamericana, Tome 21 (2005) no. 2, pp.  889-910. http://gdmltest.u-ga.fr/item/1136999135/