Generating Discrete Morse Functions from Point Data
King, Henry ; Knudson, Kevin ; Mramor, Neža
Experiment. Math., Tome 14 (2005) no. 1, p. 435-444 / Harvested from Project Euclid
If $K$ is a finite simplicial complex and $h$ is an injective map from the vertices of $K$ to $\R$, we show how to extend $h$ to a discrete Morse function in the sense of Forman in a reasonably efficient manner so that the resulting discrete Morse function mirrors the large-scale behavior of $h$. A concrete algorithm is given for the case where $K$ is a subcomplex of $\R^3$.
Publié le : 2005-05-14
Classification:  Discrete Morse theory,  persistence,  57Q99,  68U05,  57R70,  58E05,  65D18,  65R99
@article{1136926974,
     author = {King, Henry and Knudson, Kevin and Mramor, Ne\v za},
     title = {Generating Discrete Morse Functions from Point Data},
     journal = {Experiment. Math.},
     volume = {14},
     number = {1},
     year = {2005},
     pages = { 435-444},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136926974}
}
King, Henry; Knudson, Kevin; Mramor, Neža. Generating Discrete Morse Functions from Point Data. Experiment. Math., Tome 14 (2005) no. 1, pp.  435-444. http://gdmltest.u-ga.fr/item/1136926974/