We write $K_1 \geq K_2$ for two prime knots $K_1,K_2$ if there exists a surjective group homomorphism from
$G(K_1)$ onto $G(K_2)$ where $G(K_1), G(K_2)$ are the knot groups of $K_1,K_2$, respectively. In this paper, we determine this partial order for the knots in Rolfsen's knot table.
@article{1136926969,
author = {Kitano, Teruaki and Suzuki, Masaaki},
title = {A Partial Order in the Knot Table},
journal = {Experiment. Math.},
volume = {14},
number = {1},
year = {2005},
pages = { 385-390},
language = {en},
url = {http://dml.mathdoc.fr/item/1136926969}
}
Kitano, Teruaki; Suzuki, Masaaki. A Partial Order in the Knot Table. Experiment. Math., Tome 14 (2005) no. 1, pp. 385-390. http://gdmltest.u-ga.fr/item/1136926969/