A Partial Order in the Knot Table
Kitano, Teruaki ; Suzuki, Masaaki
Experiment. Math., Tome 14 (2005) no. 1, p. 385-390 / Harvested from Project Euclid
We write $K_1 \geq K_2$ for two prime knots $K_1,K_2$ if there exists a surjective group homomorphism from $G(K_1)$ onto $G(K_2)$ where $G(K_1), G(K_2)$ are the knot groups of $K_1,K_2$, respectively. In this paper, we determine this partial order for the knots in Rolfsen's knot table.
Publié le : 2005-05-14
Classification:  Knot groups,  surjective homomorphisms,  partial order,  Rolfsen's knot table,  twisted Alexander invariants,  57M25,  06A06,  57M05,  57M27
@article{1136926969,
     author = {Kitano, Teruaki and Suzuki, Masaaki},
     title = {A Partial Order in the Knot Table},
     journal = {Experiment. Math.},
     volume = {14},
     number = {1},
     year = {2005},
     pages = { 385-390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136926969}
}
Kitano, Teruaki; Suzuki, Masaaki. A Partial Order in the Knot Table. Experiment. Math., Tome 14 (2005) no. 1, pp.  385-390. http://gdmltest.u-ga.fr/item/1136926969/