Homology groups of translation planes and flocks of quadratic cones, I. The structure
Johnson, N.L.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 827-844 / Harvested from Project Euclid
The set of translation planes with spreads in $PG(3,q)$ admitting cyclic affine homology groups of order $q+1$ is shown to be equivalent to the set of flocks of quadratic cones in $PG(3,q)$. The analysis is general and considers analogous homology groups in $PG(3,K)$, for $K$ an arbitrary field and corresponding partial flocks of quadratic cones in $PG(3,K)$.
Publié le : 2006-01-14
Classification:  homology groups,  flocks,  hyperbolic fibration
@article{1136902619,
     author = {Johnson, N.L.},
     title = {Homology groups of translation planes and
flocks of quadratic cones, I. The structure},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 827-844},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902619}
}
Johnson, N.L. Homology groups of translation planes and
flocks of quadratic cones, I. The structure. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  827-844. http://gdmltest.u-ga.fr/item/1136902619/