Cameron-Liebler line classes in PG(3,4)
Govaerts, Patrick ; Penttila, Tim
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 793-804 / Harvested from Project Euclid
Cameron-Liebler line classes are sets of lines in PG(3,q) that contain a fixed number $x$ of lines of every spread. Cameron and Liebler classified them for $x\in\{0,1,2,q^2-1,q^2,q^2+1\}$ and conjectured that no others exist. This conjecture was disproved by Drudge and his counterexample was generalised to a counterexample for any odd $q$ by Bruen and Drudge. In this paper, we give the first counterexample for even $q$, a Cameron-Liebler line class with parameter $7$ in PG(3,4). We also prove the nonexistence of Cameron-Liebler line classes with parameters $4$ and $5$ in PG(3,4) and give some properties of a hypothetical Cameron-Liebler line class with parameter $6$ in PG(3,4).
Publié le : 2006-01-14
Classification:  Cameron-Liebler line classes,  blocking sets,  51E20,  51E21,  51E23
@article{1136902616,
     author = {Govaerts, Patrick and Penttila, Tim},
     title = {Cameron-Liebler line classes in PG(3,4)},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 793-804},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902616}
}
Govaerts, Patrick; Penttila, Tim. Cameron-Liebler line classes in PG(3,4). Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  793-804. http://gdmltest.u-ga.fr/item/1136902616/