Two-intersection sets with respect to lines on the Klein quadric
De Clerck, F. ; De Feyter, N. ; Durante, N.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 743-750 / Harvested from Project Euclid
We construct new examples of sets of points on the Klein quadric $\mathcal{K}$, $q$ even, having exactly two intersection sizes 0 and $\alpha$ with lines on $\mathcal{K}$. By the well-known Plücker correspondence, these examples yield new $(0,\alpha)$-geometries embedded in $PG(3,q)$, $q$ even.
Publié le : 2006-01-14
Classification: 
@article{1136902612,
     author = {De Clerck, F. and De Feyter, N. and Durante, N.},
     title = {Two-intersection sets with respect to lines on the Klein quadric},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 743-750},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902612}
}
De Clerck, F.; De Feyter, N.; Durante, N. Two-intersection sets with respect to lines on the Klein quadric. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  743-750. http://gdmltest.u-ga.fr/item/1136902612/