The two smallest minimal blocking sets of $\q(2n,3)$, $n \geqslant 3$
De Beule, J. ; Storme, L.
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 735-742 / Harvested from Project Euclid
We describe the two smallest minimal blocking sets of ${\rm Q}(2n,3)$, $n\geqslant 3$. To obtain these results, we use the characterization of the smallest minimal blocking sets of ${\rm Q}(6,3)$, different from an ovoid. We also present some geometrical properties of ovoids of ${\rm Q}(6,q)$, $q$ odd.
Publié le : 2006-01-14
Classification: 
@article{1136902611,
     author = {De Beule, J. and Storme, L.},
     title = {The two smallest minimal blocking sets of $\q(2n,3)$, $n \geqslant 3$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 735-742},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902611}
}
De Beule, J.; Storme, L. The two smallest minimal blocking sets of $\q(2n,3)$, $n \geqslant 3$. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  735-742. http://gdmltest.u-ga.fr/item/1136902611/