The Hermitian variety $H(5,4)$ has no ovoid
De Beule, Jan ; Metsch, Klaus
Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, p. 727-733 / Harvested from Project Euclid
In this paper, the non-existence of ovoids of the polar space $H(5,4)$ is shown using a geometrical and combinatorial approach. We also give a new and unified proof for the non-existence of ovoids in the polar spaces $Q^-(2n+1,q)$, $H(2n,q^2)$ and $W(2n+1,q)$ for $n\geq 2$.
Publié le : 2006-01-14
Classification:  ovoid,  polar space,  Hermitian variety
@article{1136902610,
     author = {De Beule, Jan and Metsch, Klaus},
     title = {The Hermitian variety $H(5,4)$ has no ovoid},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {12},
     number = {5},
     year = {2006},
     pages = { 727-733},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1136902610}
}
De Beule, Jan; Metsch, Klaus. The Hermitian variety $H(5,4)$ has no ovoid. Bull. Belg. Math. Soc. Simon Stevin, Tome 12 (2006) no. 5, pp.  727-733. http://gdmltest.u-ga.fr/item/1136902610/